Prolactin and glucocorticoid signaling induces lactation-specific tight junctions concurrent with β-casein expression in mammary epithelial cells.
نویسندگان
چکیده
Alveolar mammary epithelial cells (MECs) in mammary glands are highly specialized cells that produce milk for suckling infants. Alveolar MECs also form less permeable tight junctions (TJs) to prevent the leakage of milk components after parturition. In the formation process of less permeable TJs, MECs show a selective downregulation of Cldn4 and a localization change of Cldn3. To investigate what induces less permeable TJs through these compositional changes in Cldns, we focused on two lactogenesis-related hormones: prolactin (Prl) and glucocorticoids. Prl caused a downregulation of Cldn3 and Cldn4 with the formation of leaky TJs in MECs in vitro. Prl-treated MECs also showed low β-casein expression with the activation of STAT5 signaling. By contrast, dexamethasone (Dex), a glucocorticoid analogue, upregulated Cldn3 and Cldn4, concurrent with the formation of less permeable TJs and the activation of glucocorticoid signaling without the expression of β-casein. Cotreatment with Prl and Dex induced the selective downregulation of Cldn4 and the concentration of Cldn3 in the region of TJs concurrent with less permeable TJ formation and high β-casein expression. The inhibition of Prl secretion by bromocriptine in lactating mice induced the upregulation of Cldn3 and Cldn4 concurrent with the downregulation of milk production. These results indicate that the coactivation of Prl and glucocorticoid signaling induces lactation-specific less permeable TJs concurrent with lactogenesis.
منابع مشابه
Prolactin-mediated regulation of lipid biosynthesis genes in vivo in the lactating mammary epithelial cell.
Prolactin (PRL) is known to play an essential role in mammary alveolar proliferation in the pregnant mouse, but its role in lactation has been more difficult to define. Genetic manipulations that alter expression of the PRL receptor and its downstream signaling molecules resulted in developmental defects that may directly or indirectly impact secretory activation and lactation. To examine the i...
متن کاملInteractions of the ubiquitous octamer-binding transcription factor-1 with both the signal transducer and activator of transcription 5 and the glucocorticoid receptor mediate prolactin and glucocorticoid-induced β-casein gene expression in mammary epithelial cells.
Regulation of milk protein gene expression by lactogenic hormones (prolactin and glucocorticoids) provides an attractive model for studying the mechanisms by which protein and steroid hormones synergistically regulate gene expression. β-Casein is one of the major milk proteins and its expression in mammary epithelial cells is stimulated by lactogenic hormones. The signal transducer and activato...
متن کاملZinc Finger Homeodomain Factor Zfhx3 Is Essential for Mammary Lactogenic Differentiation by Maintaining Prolactin Signaling Activity.
The zinc finger homeobox 3 (ZFHX3, also named ATBF1 for AT motif binding factor 1) is a transcription factor that suppresses prostatic carcinogenesis and induces neuronal differentiation. It also interacts with estrogen receptor α to inhibit cell proliferation and regulate pubertal mammary gland development in mice. In the present study, we examined whether and how Zfhx3 regulates lactogenic di...
متن کاملPten Regulates Development and Lactation in the Mammary Glands of Dairy Cows
Pten is a tumor suppressor gene regulating many cellular processes, including growth, adhesion, and apoptosis. In the aim of investigating the role of Pten during mammary gland development and lactation of dairy cows, we analyzed Pten expression levels in the mammary glands of dairy cows by using western blotting, immunohistochemistry, and quantitative polymerase chain reaction (qPCR) assays. D...
متن کاملIsolation and characterization of porcine mammary epithelial cells 1 , 2
Within the mammary gland, functional synthesis of milk is performed by its epithelial (alveolar) cells. The availability of a stable mammary epithelial cell line is essential for biochemical studies to elucidate cellular and molecular mechanisms responsible for nutritional regulation of lactation. Therefore, porcine mammary epithelial cells (PMEC) were isolated from mammary glands of a 9-mo-old...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Biochimica et biophysica acta
دوره 1863 8 شماره
صفحات -
تاریخ انتشار 2016